Unit 3 Study Guide

Multiple Choice
Identify the choice that best completes the statement or answers the question.

___ 1. Who believed that bumps on the skull reveal mental abilities and character traits?
 a. Sir Charles Sherrington
 b. Stephen Kasslyn
 c. Franz Gall
 d. Candace Pert
 e. Solomon Snyder

___ 2. Professor Seif conducts research on the relationship between the limbic system and sexual motivation. Her research interests best represent the psychological specialty known as
 a. behaviorism.
 b. biological psychology.
 c. psychoanalysis.
 d. myelin.
 e. behavior genetics.

___ 3. Your friend is taking her first psychology class. She comes to you saying, “I don't understand why we are studying the brain; I thought this was a psychology class.” Because of your background in psychology, your best response should be
 a. “It's been known since Aristotle's time that the brain is the center of intelligence and thought.”
 b. “Phrenologists established the importance of studying the physical brain to understand mental abilities.”
 c. “Science has demonstrated that Plato's belief in the heart as the origin of emotion is correct.”
 d. “Everything psychological is simultaneously biological.”
 e. “Being able to name the parts of the brain helps us understand the basis of behavior.”

___ 4. The function of dendrites is to
 a. receive incoming signals from other neurons.
 b. release neurotransmitters into the spatial junctions between neurons.
 c. coordinate the activation of the parasympathetic and sympathetic nervous systems.
 d. control pain through the release of opiate-like chemicals into the brain.
 e. transmit signals to other neurons.

___ 5. The longest part of a motor neuron is likely to be the
 a. dendrite.
 b. axon.
 c. cell body.
 d. synapse.
 e. neurotransmitter

___ 6. A brief electrical charge that travels down the axon of a neuron is called the
a. synapse.
b. agonist.
c. action potential.
d. myelin sheath.
e. refractory period.

7. The depolarization of a neural membrane can create a(n)
a. action potential.
b. myelin sheath.
c. lesion.
d. neural network.
e. interneuron.

8. Neurotransmitters are released from vesicles located on knoblike terminals at the end of the
a. dendrites.
b. cell body.
c. axon.
d. myelin sheath.
e. synapse.

9. Neurotransmitters are chemical messengers that travel across the
a. cell body.
b. synaptic gap.
c. axon.
d. myelin sheath.
e. threshold.

10. Within a single neuron the action potential
a. is generated in the dendrites.
b. will be slower if myelin is present.
c. depends on the movement of charged calcium atoms.
d. travels in one direction toward the axon terminals.
e. crosses the synapse to the adjacent neurons.

11. Prozac, a drug commonly prescribed to treat depression, prevents the sending neuron from taking in excess serotonin. Which process does this drug prevent from taking place?
a. depolarization
b. reuptake
c. the all-or-none response
d. an action potential
e. a refractory period

12. Transferring messages from a motor neuron to a leg muscle requires the neurotransmitter known as
a. dopamine.
b. epinephrine.
c. acetylcholine.
d. insulin.
e. endorphin.
13. Schizophrenia is most closely linked with excess receptor activity for the neurotransmitter
 a. dopamine.
 b. epinephrine.
 c. acetylcholine.
 d. serotonin.
 e. GABA.

14. What are the molecules that are similar enough to a neurotransmitter to bind to its receptor sites on a
dendrite and mimic that neurotransmitter's effects called?
 a. agonists
 b. antagonists
 c. endorphins
 d. endocrines
 e. action potentials

15. The brains of patients with Parkinson's disease have little dopamine. Drugs used to treat such
 patients bind to dopamine receptors, thereby stimulating those receptors. These drugs would be
 considered
 a. antagonists.
 b. sympathetic.
 c. selectively permeable.
 d. endorphins.
 e. agonists.

16. Molecules that are similar enough to a neurotransmitter to bind to its receptor sites on a dendrite and
 block that neurotransmitter's effects are called what?
 a. agonists
 b. antagonists
 c. endorphins
 d. endocrines
 e. action potentials

17. The body's speedy, electrochemical information system is called the
 a. circulatory system.
 b. threshold.
 c. action potential.
 d. nervous system.
 e. endocrine system.

18. Stimulated digestion is to inhibited digestion as the _______ nervous system is to the _______ nervous system.
 a. somatic; autonomic
 b. autonomic; somatic
 c. central; peripheral
 d. sympathetic; parasympathetic
 e. parasympathetic; sympathetic

19. Information travels from the spinal cord to the brain via
a. interneurons.
b. the circulatory system.
c. sensory neurons.
d. the sympathetic nervous system.
e. the endocrine system.

20. Endocrine glands secrete hormones directly into
a. synaptic gaps.
b. the bloodstream.
c. dendrites.
d. sensory neurons.
e. interneurons.

21. Which endocrine gland regulates body growth?
 a. parathyroid
 b. adrenal
 c. thyroid
 d. pituitary
 e. pancreas

22. At the age of 22, Mrs. LaBlanc was less than 4 feet tall. Her short stature was probably influenced by the lack of a growth hormone produced by the
a. pancreas.
b. thyroid.
c. adrenal gland.
d. pituitary gland.
e. myelin.

23. The master gland of the endocrine system is the
 a. thyroid gland.
 b. adrenal gland.
 c. pituitary gland.
 d. pancreas.
 e. hypothalamus.

24. Mandy came home late. As she reached to turn on the kitchen light, her hand brushed against something unexpected. Her adrenal glands, as a part of the “fight-or-flight” response, released epinephrine and norepinephrine, which increased her heart rate and blood pressure. Even after she realized it was just the curtain, her excited feelings lingered. This example illustrates
 a. how chemicals can amplify or block a neurotransmitter's activity.
 b. that a resting axon has gates that block positive sodium ions.
 c. how the myelin sheath insulates and increases the speed of neural messages.
 d. the all-or-none response in neural firing.
 e. that endocrine messages tend to outlast the effects of neural messages.

25. The best way to detect enlarged fluid-filled brain regions in some patients who have schizophrenia is to use a(n)
 a. EEG.
26. The concentration of glucose in active regions of the brain underlies the usefulness of a(n)
 a. MRI.
 b. brain lesion.
 c. EEG.
 d. PET scan.
 e. hemispherectomy.

27. After Kato's serious motorcycle accident, doctors detected damage to his cerebellum. Kato is most likely to have difficulty
 a. experiencing intense emotions.
 b. reading printed words.
 c. understanding what others are saying.
 d. tasting the flavors of foods.
 e. playing his guitar.

28. Thinking about sex (in your brain's cerebral cortex) can stimulate a region of the limbic system to secrete hormones. These hormones trigger the pituitary gland to influence hormones released by other glands in the body. Which brain region influences the endocrine system?
 a. hippocampus
 b. amygdala
 c. thalamus
 d. reticular formation
 e. hypothalamus

29. To demonstrate that brain stimulation can make a rat violently aggressive, a neuroscientist should electrically stimulate the rat's
 a. reticular formation.
 b. cerebellum.
 c. medulla.
 d. amygdala.
 e. thalamus.

30. Which neural center in the limbic system plays a central role in emotions such as aggression and fear?
 a. amygdala
 b. thalamus
 c. cerebellum
 d. medulla
 e. dendrite

31. The brain structure that provides a major link between the nervous system and the endocrine system is the
 a. cerebellum.
b. amygdala.
c. reticular formation.
d. hypothalamus.
e. medulla.

32. Addictive drug cravings are likely to be associated with reward centers in the
a. thalamus.
b. cerebellum.
c. reticular formation.
d. limbic system.
e. angular gyrus.

33. Your conscious awareness of your own name and self-identity depends primarily on the normal functioning of your
a. cerebellum.
b. amygdala.
c. hypothalamus.
d. sympathetic nervous system.
e. cerebral cortex.

34. Nerve cells in the brain receive life-supporting nutrients and insulating myelin from
a. glial cells.
b. neurotransmitters.
c. motor neurons.
d. hormones.
e. sensory neurons.

35. One function of the glial cells is to
a. control heartbeat and breathing.
b. mimic the effects of neurotransmitters.
c. provide nutrients to interneurons.
d. stimulate the production of hormones.
e. control the muscle movements involved in speech.

36. Our lips are more sensitive than our knees to sensations of touch due to which of the following?
a. More neurotransmitters are released when the lips are touched.
b. A larger area of the sensory cortex is associated with our lips.
c. The dendrites connected to the lips are especially sensitive.
d. The medulla routes impulses from the lips directly to our brainstem.
e. Our lips are directly connected to the sensory cortex, but our knees are not.

37. A PET scan of a patient looking at a photograph of a painting would most likely indicate high levels of activity in which brain structure?
a. sensory cortex
b. Broca's area
c. corpus callosum
d. occipital lobes
e. frontal lobes
38. The cortical regions that are not directly involved in sensory or motor functions are known as
 a. interneurons.
 b. Broca's area.
 c. frontal lobes.
 d. association areas.
 e. parietal lobes.

39. The region of your cerebral cortex that enables you to recognize a person as your own mother is
 a. Wernicke's area.
 b. the limbic system.
 c. the angular gyrus.
 d. Broca's area.
 e. an association area.

40. A stroke patient can recognize the sound of his wife's voice but cannot recognize her face when she stands next to him. Which brain region has most likely been damaged?
 a. the visual cortex in the occipital lobe
 b. the underside of the right temporal lobe
 c. Wernicke's area in the left temporal lobe
 d. the hippocampus in the limbic system
 e. the reticular formation in the brainstem

41. If a blind person uses one finger to read Braille, the brain area dedicated to that finger expands as the sense of touch invades the visual cortex. This is an example of
 a. brain plasticity.
 b. hemispheric specialization.
 c. neural prosthetics.
 d. integrated association areas.
 e. aphasia.

42. A person whose hand had been amputated actually felt sensations on his nonexistent fingers when his face was stroked. This best illustrates the consequences of
 a. tomography.
 b. brain plasticity.
 c. lateralization.
 d. hemispherectomy.
 e. aphasia.

43. The benefits of brain plasticity are most clearly demonstrated in
 a. children who have had a cerebral hemisphere surgically removed.
 b. people paralyzed by a severed spinal cord.
 c. individuals with Alzheimer's disease.
 d. adults with aphasia.
 e. people free of any disease or brain damage.

44. Physical exercise and exposure to stimulating environments are most likely to promote
 a. phrenology.
 b. neurogenesis.
c. hemispherectomy.
d. reward deficiency syndrome.
e. plasticity.

45. Neurosurgeons have severed the corpus callosum in human patients in order to reduce
a. aphasia.
b. epileptic seizures.
c. depression.
d. neural plasticity.
e. reward deficiency syndrome.

46. In a recent car accident, Tamiko sustained damage to his right cerebral hemisphere. This injury is most likely to reduce Tamiko's ability to
a. facially express emotions.
b. solve arithmetic problems.
c. understand simple verbal requests.
d. process information in an orderly sequence.
e. control his aggression.

47. Deaf people who use sign language typically
a. demonstrate greater mathematical competence than hearing persons.
b. process language in their left cerebral hemisphere.
c. recognize facial expressions of emotion with their left rather than their right cerebral hemisphere.
d. have a smaller corpus callosum than hearing persons.
e. process language in the right hemisphere rather than the left.

48. When looking at a flying bird, we are consciously aware of our cognitive processing (“It's a bird!”) but not of our subconscious processing of the bird's form, color, distance, and movement. This illustrates what psychologists call
a. dual processing.
b. serial processing.
c. brain plasticity.
d. selective attention.
e. cognitive neuroscience.

49. Research into dual processing provides partial evidence for levels of consciousness similar to the levels first described by which psychologist?

a. B. F. Skinner
b. Wilhelm Wundt
c. Sigmund Freud
d. Mary Calkins
e. Edward Titchener

50. Assessing the relative effects of nature and nurture on individual differences in personality would be of most direct interest to
a. evolutionary psychologists.
b. humanistic psychologists.
c. behavior geneticists.
d. Freudian psychologists.
e. psychometricians.

51. A human sperm cell contains
a. 23 chromosomes.
b. 23 genes.
c. 46 chromosomes.
d. 46 genes.
e. 92 DNA strands.

52. DNA is a complex
a. sex hormone.
b. action potential.
c. molecule.
d. synapse.
e. neuron.

53. The biochemical units of heredity that make up the chromosomes are called
a. genes.
b. genomes.
c. molecular genetics.
d. neurotransmitters.
e. heredity.

54. Depending on environmental conditions, specific genes can be either
a. nature or nurture.
b. active or inactive.
c. identical or fraternal.
d. chromosomes or genomes.
e. sperm or eggs.

55. Twin studies suggest that Alzheimer's disease is influenced by
a. hormones.
b. nurture.
c. heredity.
d. natural selection.
e. environment.

56. Compared with identical twins, fraternal twins are
a. less likely to be the same sex and more likely to be similar in extraversion.
b. more likely to be the same sex and more likely to be similar in extraversion.
c. more likely to be the same sex and less likely to be similar in extraversion.
d. less likely to be the same sex and less likely to be similar in extraversion.
e. less likely to be the same sex and equally likely to be similar in extraversion.

57. Twin studies suggest that a strong influence on emotional instability comes from
a. genetic predispositions.
b. the Y chromosome.
c. natural selection.
d. the X chromosome.
e. mutation.

58. Adopted children are more likely to demonstrate levels of agreeableness and extraversion, more similar to that of their biological parents than their adoptive parents. This finding suggests that personality traits are more strongly influenced by
 a. genes than by heredity.
 b. home environment than by genes.
 c. environmental relatives than by genetic relatives.
 d. nurture than by nature.
 e. genes than by the home environment.

59. Research most clearly suggests that personality traits are more strongly influenced by
 a. genes than by home environment.
 b. home environment than by genes.
 c. genes than by peers.
 d. home environment than by peers.
 e. genes than by heredity.

60. Heritability refers to the extent to which
 a. unrelated individuals share common genes.
 b. genetic mutations can be transmitted to one's offspring.
 c. trait differences among individuals are attributable to genetic variations.
 d. adult personality is determined by infant personality.
 e. nurture controls a trait rather than nature.

61. Who are likely to show the greatest similarity in personality?
 a. Ruth and Ramona, identical twins
 b. Philip and Paul, fraternal twins
 c. Larry and Laura, brother and sister
 d. Vincent Sr. and Vincent Jr., father and son
 e. Elizabeth and Betsy, mother and daughter

62. An African butterfly that is green in the summer turns brown in the fall thanks to a temperature-controlled genetic switch. This best illustrates that genes are
 a. DNA.
 b. self-regulating.
 c. chromosomes.
 d. protein molecules.
 e. evolving.

63. Because Marla is the first girl in her fourth-grade class to sexually mature, she is sometimes teased and rejected by her classmates. Marla's sense of social isolation and embarrassment result from the interaction of
 a. chromosomes.
 b. nature and nurture.
 c. DNA and genes.
d. genome and molecular genetics.

e. home environment and school environment.

64. People have always responded so positively to Alyssa's good looks that she has developed a socially confident and outgoing personality. This best illustrates

a. the impact of personality on gender identity.
b. that ideas about gender and social roles are complementary.
c. the interaction of nature and nurture.
d. the reciprocal influence of norms and roles.
e. the importance of nurture rather than nature.

65. Molecular behavior geneticists seek links between __________ and specific disorders.

a. chromosomes
b. proteins
c. genes
d. environment
e. behavior

66. Natural selection acts on

a. proteins.
b. cells.
c. individuals.
d. siblings.
e. populations.

67. Adaptation best illustrates

a. mutation.
b. natural selection.
c. behavior genetics.
d. nurture influences.
e. behaviorism.

68. According to evolutionary psychologists, our predisposition to overconsume fatty junk foods illustrates that we are biologically prepared to behave in ways that promoted the ________ of our ancestors.

a. mutation
b. heredity
c. reproductive success
d. neuroticism
e. intelligence

69. Evolutionary psychologists would be most likely to predict that

a. more people are biologically predisposed to fear guns than to fear snakes.
b. children are more likely to be valued by their biological fathers than by their stepfathers.
c. people are the most romantically attracted to those who are the most genetically dissimilar to themselves.
d. genetic predispositions have little effect on our social relationships.
e. environmental influences are more deterministic than genetic influences.

___ 70. Evolutionary psychologists would be most likely to attribute gender differences in attitudes toward sex to the fact that men have ________ than do women.
 a. larger bodies
 b. stronger personalities
 c. a weaker sense of empathy
 d. greater reproductive potential
 e. more insecurities

___ 71. Brittla frequents only the most expensive clubs in an effort to attract a desirable mate. According to evolutionary psychologists, Brittla's behavior is a product of
 a. mutation.
 b. behaviorism.
 c. her upbringing.
 d. genetic predispositions.
 e. social pressure.

___ 72. Males in their ________ are most likely to be sexually attracted to women who are several years older rather than several years younger than themselves.
 a. teens.
 b. twenties.
 c. thirties.
 d. forties.
 e. fifties.

___ 73. Women are most likely to be sexually attracted to men who seem
 a. shy and reserved.
 b. emotionally reactive and intense.
 c. interested in recreational sex.
 d. mature and affluent.
 e. extraverted and dependent.

___ 74. Evolutionary psychologists are most likely to be criticized for
 a. providing hindsight explanations for human behaviors.
 b. failing to consider unconscious motivations.
 c. overemphasizing humans' capacity to learn and adapt to a variety of environments.
 d. underestimating gender differences in mate selection.
 e. overestimating cultural differences in human sexual behaviors.

___ 75. How have gender roles in the United States changed over time?
 a. Gender roles have changed relatively little when measured using objective surveys.
 b. Traditional masculine or feminine traits are not as significant in mate selection as they were in the past.
 c. Biological factors were once thought to influence gender roles, but recent research indicates that genes do not influence gender roles.
 d. Gender roles for women discouraged aggressive behavior in the past, but now women and men have equal rates of aggression.
e. The rate of women's participation in traditionally male occupations has not changed significantly in the past three decades.
MULTIPLE CHOICE

1. **ANS:** C
PTS: 1
DIF: Easy
REF: Page 51 | Section- Biological Bases of Behavior: 3A—Neural Processing and the Endocrine System
OBJ: 1
TOP: Biological bases of behavior
MSC: Factual | Definitional

2. **ANS:** B
PTS: 1
DIF: Medium
REF: Page 51 | Section- Biological Bases of Behavior: 3A—Neural Processing and the Endocrine System
OBJ: 1
TOP: Biological bases of behavior
MSC: Conceptual | Application

3. **ANS:** D
PTS: 1
DIF: Easy
REF: Page 51 | Section- Biological Bases of Behavior: 3A—Neural Processing and the Endocrine System
OBJ: 1
TOP: Biological bases of behavior
MSC: Conceptual | Application

4. **ANS:** A
PTS: 1
DIF: Medium
REF: Page 53 | Section- Biological Bases of Behavior: 3A—Neural Processing and the Endocrine System
OBJ: 2
TOP: Neurons
MSC: Factual | Definitional

5. **ANS:** B
PTS: 1
DIF: Easy
REF: Page 53 | Section- Biological Bases of Behavior: 3A—Neural Processing and the Endocrine System
OBJ: 2
TOP: Neurons
MSC: Factual | Definitional

6. **ANS:** C
PTS: 1
DIF: Easy
REF: Page 53 | Section- Biological Bases of Behavior: 3A—Neural Processing and the Endocrine System
OBJ: 2
TOP: Neurons
MSC: Factual | Definitional

7. **ANS:** A
PTS: 1
DIF: Medium
REF: Page 54 | Section- Biological Bases of Behavior: 3A—Neural Processing and the Endocrine System
OBJ: 2
TOP: Neurons
MSC: Factual | Definitional

8. **ANS:** C
PTS: 1
DIF: Easy
REF: Page 55 | Section- Biological Bases of Behavior: 3A—Neural Processing and the Endocrine System
OBJ: 3
TOP: How neurons communicate
MSC: Factual | Definitional

9. **ANS:** B
PTS: 1
DIF: Easy
REF: Page 55 | Section- Biological Bases of Behavior: 3A—Neural Processing and the Endocrine System
OBJ: 3
TOP: How neurons communicate
MSC: Factual | Definitional

10. **ANS:** D
PTS: 1
DIF: Medium
REF: Page 55 | Section- Biological Bases of Behavior: 3A—Neural Processing and the Endocrine System
OBJ: 3
TOP: How neurons communicate
MSC: Factual | Definitional

11. **ANS:** B
PTS: 1
DIF: Medium
REF: Page 56 | Section- Biological Bases of Behavior: 3A—Neural Processing and the Endocrine System
OBJ: 3
TOP: How neurons communicate
MSC: Conceptual | Application

12. **ANS:** C
PTS: 1
DIF: Medium
REF: Page 56 | Section- Biological Bases of Behavior: 3A—Neural Processing and the Endocrine System
OBJ: 4
TOP: How neurotransmitters influence us
MSC: Conceptual

13. **ANS:** A
PTS: 1
DIF: Difficult
REF: Page 57 | Section- Biological Bases of Behavior: 3A—Neural Processing and the Endocrine System
OBJ: 4
TOP: How neurotransmitters influence us (TableA 3.1)
MSC: Factual | Definitional

14. **ANS:** A
PTS: 1
DIF: Difficult
REF: Page 57 | Section- Biological Bases of Behavior: 3A—Neural Processing and the Endocrine System
OBJ: 4
TOP: How drugs and other chemicals alter neurotransmission
15. ANS: E PTS: 1 DIF: Medium
REF: Page 57 | Section- Biological Bases of Behavior: 3A—Neural Processing and the Endocrine System
OBJ: 4 TOP: How drugs and other chemicals alter neurotransmission
MSC: Factual | Definitional

16. ANS: B PTS: 1 DIF: Difficult
REF: Page 58 | Section- Biological Bases of Behavior: 3A—Neural Processing and the Endocrine System
OBJ: 4 TOP: How drugs and other chemicals alter neurotransmission
MSC: Factual | Definitional

17. ANS: D PTS: 1 DIF: Easy
REF: Page 59 | Section- Biological Bases of Behavior: 3A—Neural Processing and the Endocrine System
OBJ: 5 TOP: The nervous system
MSC: Factual | Definitional

18. ANS: B PTS: 1 DIF: Difficult
REF: Page 59 | Section- Biological Bases of Behavior: 3A—Neural Processing and the Endocrine System
OBJ: 5 TOP: The peripheral nervous system
MSC: Conceptual

19. ANS: A PTS: 1 DIF: Difficult
REF: Page 61 | Section- Biological Bases of Behavior: 3A—Neural Processing and the Endocrine System
OBJ: 5 TOP: The central nervous system
MSC: Conceptual

20. ANS: D PTS: 1 DIF: Easy
REF: Page 62 | Section- Biological Bases of Behavior: 3A—Neural Processing and the Endocrine System
OBJ: 6 TOP: The endocrine system
MSC: Factual | Definitional

21. ANS: D PTS: 1 DIF: Difficult
REF: Page 63 | Section- Biological Bases of Behavior: 3A—Neural Processing and the Endocrine System
OBJ: 6 TOP: The endocrine system
MSC: Conceptual | Application

22. ANS: E PTS: 1 DIF: Medium
REF: Page 63 | Section- Biological Bases of Behavior: 3A—Neural Processing and the Endocrine System
OBJ: 6 TOP: The endocrine system
MSC: Factual | Definitional

23. ANS: C PTS: 1 DIF: Easy
REF: Page 63 | Section- Biological Bases of Behavior: 3A—Neural Processing and the Endocrine System
OBJ: 6 TOP: The endocrine system
MSC: Factual | Definitional

24. ANS: B PTS: 1 DIF: Medium
REF: Page 68 | Section- Biological Bases of Behavior: 3B—The Brain
OBJ: 1 TOP: The tools of discovery
MSC: Factual | Definitional

25. ANS: D PTS: 1 DIF: Difficult
REF: Page 68 | Section- Biological Bases of Behavior: 3B—The Brain
OBJ: 1 TOP: The tools of discovery
MSC: Factual | Definitional

26. ANS: E PTS: 1 DIF: Difficult
REF: Page 70 | Section- Biological Bases of Behavior: 3B—The Brain
OBJ: 2 TOP: The cerebellum
MSC: Conceptual | Application

27. ANS: E PTS: 1 DIF: Medium
REF: Page 72 | Section- Biological Bases of Behavior: 3B—The Brain
OBJ: 3 TOP: The limbic system
MSC: Factual | Definitional

28. ANS: D PTS: 1 DIF: Medium
REF: Page 71 | Section- Biological Bases of Behavior: 3B—The Brain
OBJ: 3 TOP: The amygdala
MSC: Conceptual | Application

29. ANS: A PTS: 1 DIF: Easy
31. ANS: D PTS: 1 DIF: Medium
REF: Page 71 | Section: Biological Bases of Behavior: 3B—The Brain
OBJ: 3 TOP: The amygdala MSC: Factual | Definitional

32. ANS: D PTS: 1 DIF: Medium
REF: Page 72 | Section: Biological Bases of Behavior: 3B—The Brain
OBJ: 3 TOP: The hypothalamus MSC: Factual | Definitional

33. ANS: E PTS: 1 DIF: Medium
REF: Page 74 | Section: Biological Bases of Behavior: 3B—The Brain
OBJ: 4 TOP: The cerebral cortex MSC: Conceptual | Application

34. ANS: A PTS: 1 DIF: Easy
REF: Page 74 | Section: Biological Bases of Behavior: 3B—The Brain
OBJ: 4 TOP: Structure of the cortex MSC: Factual | Definitional

35. ANS: C PTS: 1 DIF: Difficult
REF: Page 74 | Section: Biological Bases of Behavior: 3B—The Brain
OBJ: 4 TOP: Structure of the cortex MSC: Factual | Definitional

36. ANS: B PTS: 1 DIF: Medium
REF: Page 77 | Section: Biological Bases of Behavior: 3B—The Brain
OBJ: 5 TOP: Functions of the cortex MSC: Factual | Definitional

37. ANS: D PTS: 1 DIF: Medium
REF: Page 78 | Section: Biological Bases of Behavior: 3B—The Brain
OBJ: 5 TOP: Functions of the cortex MSC: Factual | Definitional

38. ANS: D PTS: 1 DIF: Medium
REF: Page 78 | Section: Biological Bases of Behavior: 3B—The Brain
OBJ: 5 TOP: Association areas MSC: Factual | Definitional

39. ANS: E PTS: 1 DIF: Difficult
REF: Page 79 | Section: Biological Bases of Behavior: 3B—The Brain
OBJ: 5 TOP: Association areas MSC: Conceptual | Application

40. ANS: B PTS: 1 DIF: Medium
REF: Page 79 | Section: Biological Bases of Behavior: 3B—The Brain
OBJ: 5 TOP: Association areas MSC: Conceptual | Application

41. ANS: A PTS: 1 DIF: Medium
REF: Page 82 | Section: Biological Bases of Behavior: 3B—The Brain
OBJ: 7 TOP: The brain's plasticity MSC: Factual | Definitional

42. ANS: A PTS: 1 DIF: Medium
REF: Page 82 | Section: Biological Bases of Behavior: 3B—The Brain
OBJ: 7 TOP: The brain's plasticity MSC: Factual | Definitional

43. ANS: B PTS: 1 DIF: Difficult
REF: Page 82 | Section: Biological Bases of Behavior: 3B—The Brain
OBJ: 7 TOP: The brain's plasticity MSC: Factual | Definitional

44. ANS: A PTS: 1 DIF: Easy
REF: Page 83 | Section: Biological Bases of Behavior: 3B—The Brain
OBJ: 7 TOP: The brain's plasticity MSC: Factual | Definitional

45. ANS: B PTS: 1 DIF: Medium
REF: Page 84 | Section: Biological Bases of Behavior: 3B—The Brain
OBJ: 8 TOP: Splitting the brain MSC: Factual | Definitional

46. ANS: A PTS: 1 DIF: Difficult
REF: Page 86 | Section: Biological Bases of Behavior: 3B—The Brain
47. OBJ: 8 TOP: Splitting the brain MSC: Conceptual | Application
 ANS: B PTS: 1 DIF: Medium
 REF: Page 87 | Section- Biological Bases of Behavior: 3B—The Brain

48. OBJ: 9 TOP: Right-left differences in the intact brain MSC: Factual | Definitional
 ANS: A PTS: 1 DIF: Medium
 REF: Page 90 | Section- Biological Bases of Behavior: 3B—The Brain

49. OBJ: 10 TOP: The brain and consciousness MSC: Conceptual | Application
 ANS: C PTS: 1 DIF: Difficult
 REF: Page 90 | Section- Biological Bases of Behavior: 3B—The Brain

50. OBJ: 10 TOP: The brain and consciousness MSC: Conceptual
 ANS: C PTS: 1 DIF: Medium
 REF: Page 95 | Section- Biological Bases of Behavior: 3C—Genetics-Evolutionary Psychology-and Behavior

51. OBJ: 1 TOP: Behavior genetics: Predicting individual differences MSC: Conceptual
 ANS: A PTS: 1 DIF: Medium
 REF: Page 95 | Section- Biological Bases of Behavior: 3C—Genetics-Evolutionary Psychology-and Behavior

52. OBJ: 1 TOP: Genes: Our codes for life MSC: Factual | Definitional
 ANS: C PTS: 1 DIF: Medium
 REF: Page 95 | Section- Biological Bases of Behavior: 3C—Genetics-Evolutionary Psychology-and Behavior

53. OBJ: 1 TOP: Genes: Our codes for life MSC: Factual | Definitional
 ANS: A PTS: 1 DIF: Medium
 REF: Page 95 | Section- Biological Bases of Behavior: 3C—Genetics-Evolutionary Psychology-and Behavior

54. OBJ: 1 TOP: Genes: Our codes for life MSC: Factual | Definitional
 ANS: B PTS: 1 DIF: Medium
 REF: Page 95 | Section- Biological Bases of Behavior: 3C—Genetics-Evolutionary Psychology-and Behavior

55. OBJ: 2 TOP: Twin and adoption studies MSC: Factual | Definitional
 ANS: C PTS: 1 DIF: Easy
 REF: Page 97 | Section- Biological Bases of Behavior: 3C—Genetics-Evolutionary Psychology-and Behavior

56. OBJ: 2 TOP: Twin and adoption studies MSC: Conceptual
 ANS: D PTS: 1 DIF: Easy
 REF: Page 97 | Section- Biological Bases of Behavior: 3C—Genetics-Evolutionary Psychology-and Behavior

57. OBJ: 2 TOP: Twin and adoption studies MSC: Factual | Definitional
 ANS: A PTS: 1 DIF: Easy
 REF: Page 98 | Section- Biological Bases of Behavior: 3C—Genetics-Evolutionary Psychology-and Behavior

58. OBJ: 2 TOP: Biological versus adoptive relatives MSC: Factual | Definitional
 ANS: E PTS: 1 DIF: Medium
 REF: Page 99 | Section- Biological Bases of Behavior: 3C—Genetics-Evolutionary Psychology-and Behavior

59. OBJ: 2 TOP: Biological versus adoptive relatives MSC: Factual | Definitional
 ANS: A PTS: 1 DIF: Medium
 REF: Page 99 | Section- Biological Bases of Behavior: 3C—Genetics-Evolutionary Psychology-and Behavior
60. ANS: C PTS: 1 DIF: Easy
REF: Page 100 | Section- Biological Bases of Behavior: 3C—Genetics-Evolutionary Psychology-and Behavior
OBJ: 3 TOP: Heritability MSC: Factual | Definitional
61. ANS: A PTS: 1 DIF: Easy
REF: Page 100 | Section- Biological Bases of Behavior: 3C—Genetics-Evolutionary Psychology-and Behavior
OBJ: 3 TOP: Heritability MSC: Conceptual | Application
62. ANS: B PTS: 1 DIF: Medium
REF: Page 101 | Section- Biological Bases of Behavior: 3C—Genetics-Evolutionary Psychology-and Behavior
OBJ: 3 TOP: Nature and nurture
MSC: Factual | Definition
63. ANS: B PTS: 1 DIF: Medium
REF: Page 102 | Section- Biological Bases of Behavior: 3C—Genetics-Evolutionary Psychology-and Behavior
OBJ: 3 TOP: Gene-environment interactions
MSC: Conceptual | Application
64. ANS: C PTS: 1 DIF: Medium
REF: Page 102 | Section- Biological Bases of Behavior: 3C—Genetics-Evolutionary Psychology-and Behavior
OBJ: 3 TOP: Gene-environment interaction
MSC: Conceptual | Application
65. ANS: C PTS: 1 DIF: Easy
REF: Page 102 | Section- Biological Bases of Behavior: 3C—Genetics-Evolutionary Psychology-and Behavior
OBJ: 4 TOP: The new frontier: Molecular genetics
MSC: Factual | Definition
66. ANS: E PTS: 1 DIF: Easy
REF: Page 103 | Section- Biological Bases of Behavior: 3C—Genetics-Evolutionary Psychology-and Behavior
OBJ: 5 TOP: Natural selection and adaptation
MSC: Factual | Definition
67. ANS: B PTS: 1 DIF: Medium
REF: Page 104 | Section- Biological Bases of Behavior: 3C—Genetics-Evolutionary Psychology-and Behavior
OBJ: 5 TOP: Evolutionary success helps explain similarities
MSC: Conceptual | Application
68. ANS: C PTS: 1 DIF: Medium
REF: Page 105 | Section- Biological Bases of Behavior: 3C—Genetics-Evolutionary Psychology-and Behavior
OBJ: 5 TOP: Outdated tendencies
MSC: Factual | Definition
69. ANS: B PTS: 1 DIF: Difficult
REF: Page 105 | Section- Biological Bases of Behavior: 3C—Genetics-Evolutionary Psychology-and Behavior
OBJ: 5 TOP: Evolutionary psychology today
MSC: Conceptual
70. ANS: D PTS: 1 DIF: Difficult
REF: Page 106 | Section- Biological Bases of Behavior: 3C—Genetics-Evolutionary Psychology-and Behavior
OBJ: 6 TOP: Natural selection and mating preferences
MSC: Conceptual
71. ANS: D PTS: 1 DIF: Medium
REF: Page 106 | Section- Biological Bases of Behavior: 3C—Genetics-Evolutionary Psychology-and Behavior
OBJ: 6 TOP: Natural selection and mating preferences
MSC: Conceptual | Application
72. ANS: A PTS: 1 DIF: Medium
REF: Page 106 | Section- Biological Bases of Behavior: 3C—Genetics-Evolutionary Psychology-and Behavior
OBJ: 6 TOP: Natural selection and mating preferences
73. ANS: D PTS: 1 DIF: Medium
REF: Page 106 | Section- Biological Bases of Behavior: 3C—Genetics-Evolutionary Psychology-and Behavior OBJ: 6 TOP: Natural selection and mating preferences
MSC: Factual | Definitional

74. ANS: A PTS: 1 DIF: Medium
REF: Page 107 | Section- Biological Bases of Behavior: 3C—Genetics-Evolutionary Psychology-and Behavior OBJ: 7 TOP: Critiquing the evolutionary perspective
MSC: Factual | Definitional

75. ANS: B PTS: 1 DIF: Medium
REF: Page 108 | Section- Biological Bases of Behavior: 3C—Genetics-Evolutionary Psychology-and Behavior OBJ: 8 TOP: Reflections on nature and nurture
MSC: Factual | Definitional